First Examples of η ¹-Ligated 1,2,4-Triphosphacyclopentadienyl Ring Systems. Synthesis and Fluxional Behaviour of *trans*-[MCI(C₂R₂P₃)(PEt₃)₂], (R = Bu^t, Adamantyl), $(M = Pd, Pt)$; Crystal and Molecular Structures of trans- $[PtX(C_2Bu^t₂P₃)(PR₃)₂]$, (X = CI, $R = Et$; $X = I$, $R = Ph$)

Rainer Bartsch, Duncan Carmichael, Peter B. Hitchcock, Mohamed F. Meidine, John F. Nixon," and Gary J. D. Sillett

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, U.K.

First examples of q'-ligated **1,2,4-triphosphacyclopentadienyl** ring systems are described and structural features and solution fluxional behaviour are discussed.

compounds are **of** considerable current interest.' Typical **q4-** interesting structural features and fluxional behaviour. and η ⁵-ligated ring systems containing 2 or 3 phosphorus Treatment of cis- $[MCl_2(PEt_3)_2]$, (M = Pd, Pt) with [Li-
atoms which have been recently reported²⁻⁶ are shown in (dme)₃][C₂R₂P₃],⁷ (R = Bu^t, adam

The ligating properties of unsaturated organophosphorus **triphosphacyclopentadienyl** ring systems which exhibit

 $(\text{dme})_3$][C₂R₂P₃],7 (\overline{R} = Bu^t, adamantyl), gives the yellow, structures **(A)--(D)**.
(M = Pt), and red, **(M** = Pd), air-stable crystalline complexes
We now describe the first examples of η ¹-ligated 1,2,4- *trans*-[MCl(C₂R₂P₃)(PEt₃)₂], **(1)--(3)**. Similarly *cis*-We now describe the first examples of η ¹-ligated 1,2,4- *trans*-[MCl(C₂R₂P₃)(PEt₃)₂], (1)–(3). Similarly *cis-*

 $[PtI₂(PPh₃)₂]$ affords *trans*- $[PtI(C₂R₂P₃)(PPh₃)₂$, $(R = Bu^t)$, $(4).†$

M/'

The molecular stuctures of **(2)** and **(4)** were confirmed by single crystal X -ray diffraction studies and are shown in Figures 1 and 2. \ddagger In each case the $(C_2Bu^TP_3)$ ring is bound to the metal by one of the two adjacent phosphorus atoms and is

 \dagger ³¹P N.m.r. spectroscopic data: (32.4 MHz; C₆D₅CD₃; -75 °C; δ in p.p.m. relative to $P(\text{OMe})_3$ positive values to low field; J in Hz). For (1): δ +112.0(PA) δ +19.1(PM), δ -18.0(PN) δ -122.5 (PX); $J_{\rm PAPM}$ 43, $J_{\rm PAPN}$ 20, $J_{\rm PMPN}$ 507, $J_{\rm PNPX}$ 44.

For (2): δ +102.2(P^A) δ +1.8(P^M), δ -35.1(P^N), δ -127.6(P^X); J_{PAp}M 43, J_{PAp}N 22, J_{PApt} 59, J_{PMpN} 497, J_{PMpt} 396, J_{PNpx} 33, J_{PNpt} 2833, $J_{P}x_{Pt}$ 2283

For (3) δ +92.9(PA), δ +2.7(PM), δ -35.1(PN), δ -127.3(PX); J~A~M 41, Jp~p~ 24, **Jp~pt** 61, Jp~p~ 498, **Jp~pt** 333, Jp~p~ 34, JP~Pt 2920, J_Px_{Pt} 2298.

For **(4)** δ +86.2(P^A), δ -6.8(P^M), δ -8.5(P^N), δ -126.2(P^X); For (4) δ +86.2(P^A), δ -6.8(P^M), δ -8.5(P^N), δ -126.2(P^X);
J_PA_PM 35, J_{PAP}N 23, J_PA_{Pt} 83, J_{PMPN} 500, J_{PMPt} 276, J_{PNP}x 36, J_{PNPt} 2679, J_Px_{Pt} 2512.

 \ddagger *Crystal data* for (2): $C_{22}H_{48}CIP_5Pt$, $M = 698.0$, orthorhombic, space group *Pnma, a* = 18.053(2), *b* = 13.366(3), *c* = 12.820(3) Å, *U* = 3093.4 Å^3 , $Z = 4$, $D_g = 1.50 \text{ g cm}^{-3}$, monochromated Mo-K α radiation, $\hat{\lambda} = 0.71069 \text{ Å}, \mu = 49.0 \text{ cm}^{-1}$. The structure was solved by routine heavy-atom methods and refined by full matrix least squares with non-hydrogen atoms anisotropic, using 2110 reflections with $I > \sigma(I)$ measured on an Enraf-Nonius CAD-4 diffractometer. The final residuals were $R = 0.030$, $R' = 0.038$.

For (4): $C_{46}H_{48}IP_5Pt$. C_7H_8 , $M = 1169.9$, monoclinic, space group *Cm, a* = 17.516(3), *b* = 16.357(6), *c* = 10.330(4) Å, β = 122.26(3)°, *U* $= 2502.8$ Å³, $Z = 2$, $D_c = 1.55$ g cm⁻³, monochromated Mo-K α radiation, $\lambda = 0.71069 \text{ Å}$, $\mu = 36.3 \text{ cm}^{-1}$. The structure was solved as for (2) except that $R = 0.037$, $R' = 0.045$ for 1143 reflections with $I > \sigma(I)$.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue 1.

Figure 1. Molecular structure of **(2).** Selected bond lengths (A): Pt-CI 2.345(2); Pt-P(1) 2.243(2); Pt-P(4) 2.311(2); P(1)-P(2) 2.068(3); P(**1)-C(2)** 1.71 l(7); P(2)-C(1) 1.745(7); P(3)-C(1) 1.726(7); P(3)- $C(2)$ 1.740(8).

Figure 2. Molecular structure of **(4).** Selected bond lengths (A): Pt-I 2.641(2); Pt-P(1) 2.257(7); Pt-P(4) 2.343(5); P(1)-P(2) 2.010(11); P(1)-C(1) 1.76(4); P(2)-C(2) 1.73(4); P(3)-C(1) 1.69(2); P(3)-C(2) 1.81(4).

Figure 3. 32.4 MHz ³¹P-{¹H} n.m.r. spectrum of (1) recorded at (a) +50 °C, (b) -30 °C, and (c) -75 °C ([²H₈] toluene).

perfectly flat, lying on a crystallographic mirror plane together with the Pt and halogen atom. This indicates that the bonding mode is best represented **by (X)** rather than **(Y).**

Accordingly the $31P-{1H}$ n.m.r. spectra of the platinum complexes (2) and (3) exhibit values for $^{1}J_{\text{PtP}}$ of *ca.* 2900 Hz which are indicative of a phosphane ligand trans to Cl in a square planar Pt^H complex.⁸ The phosphido structure (Y) would be expected⁹ to show a much smaller value of ¹*J*_{PtP}N.

Variable temperature $31P-\{1H\}$ n.m.r. studies reveal that all the complexes are fluxional in solution. At -75 °C the spectrum of **(1)** shown in Figure **3** exhibits the characteristic $[AMNX₂]$ pattern expected for the known rigid structure $(X =$ $PR₃$ resonance). As the temperature is raised resonances $PM₄$ and PN broaden and coalesce while those of PA and PX also simplify as the averaged $[AM_2X_2]$ spectrum results at + 50 °C.

In the platinum complexes (2) — (4) the retention of $3J_{\text{PtP}}$ throughout the temperature range rules out a dissociative mechanism for the fluxional process, which is best visualised as an intramolecular 1,2-shift of the metal between PM and PN as shown in Scheme 1. This type of mechanism has been postulated in related systems involving N, **S,** and Se heterocycles *.lo,* **1** *¹*

Further treatment of (1) and (2) with $[Li(dme)_3][C_2R_2P_3]$, $(R = But)$, gives rise to the expected bis $(n¹-1, 2, 4$ -triphosphacyclopentadienyl) complexes *trans*-[M(C₂Bu^t₂P₃)₂- $(PEt₃)₂$, $[(5), M = Pd; (6), M = Pt]$, which exhibit similar fluxional behaviour in solution to (1) — (4) .

We thank the S.E.R.C. for financial support (for R. B. and

M. **F.** M.) and studentships (for D. C. and G. J. D. **S.)** and Messrs. Johnson Matthey for the loan of some platinum metal salts.

Received, 11th July 1988; Corn. 8102773K

References

- 1 **J. F. Nixon,** *Chem. Rev.,* **in the press.**
- **2 P. B. Hitchcock, M.** J. **Maah, and** J. F. **Nixon, J.** *Chem.* **SOC.,** *Chem. Commun.,* **1986,737; P. Binger, R. Milczarek,** R. **Mynott, M. Regitz, and W. Rosch,** *Angew, Chem., Int. Edn., Engl.,* **1986, 25, 644.**
- **3 P. Binger, R. Milczarek,** R. **Mynott, and M. Regitz,** *J. Organomet. Chem.,* **1987,323, C35.**
- **4 P. B. Hitchcock, M.** J. **Maah,** J. **F. Nixon, and C. Woodward, J.** *Chem.* **SOC.,** *Chem. Commun.,* **1987,844.**
- *5* **R. Bartsch, P. B. Hitchcock, and** J. **F. Nixon,** *J. Chem.* **Soc.,** *Chem. Commun.,* **1987, 1146; 1988, 819.**
- **6 R. Bartsch, P. B. Hitchcock, and** J. **F. Nixon, J.** *Organomet. Chem.,* **1988,340, C37.**
- **7 G. Becker, W. Becker, R. Knebl, H. Schmidt, U. Weber, andM. Westerhausen,** *Nova Acta Leopoldina,* **1985,59, (264),** *55.*
- **8 J.** F. **Nixon and A. Pidcock,** *Ann. Rep. NMR Spectrosc.,* **1969,2, 345.**
- **9 S.** *S.* **Al-Juaid, D. Carmichael, P. B. Hitchcock,** *S.* **Lochschmidt, A. Marinetti,** F. **Mathey, and** J. **F. Nixon, J.** *Chem.* **SOC.,** *Chem. Commun.,* **1988, 1156.**
- **10 M. Kooti and J. F. Nixon, J.** *Orgunomet. Chem.,* **1976, 105,217.**
- **11 E. W. Abel, P. K. Mittal, K.** G. **Orrell, and V. Sik, J.** *Chem.* **SOC.,** *Dalton Trans.,* **1985, 1569, and references therein.**